- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0001000003000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Anderson, Luke (4)
-
Li, Tzu-Mao (4)
-
Ragan-Kelley, Jonathan (4)
-
Durand, Frédo (3)
-
Adams, Andrew (2)
-
Hu, Yuanming (2)
-
Ma, Karima (2)
-
Baghdadi, Riyadh (1)
-
Carr, Nathan (1)
-
Fatahalian, Kayvon (1)
-
Gharbi, Michaël (1)
-
Jin, Tian (1)
-
Johnson, Steven (1)
-
Steiner, Benoit (1)
-
Sun, Qi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Hu, Yuanming; Li, Tzu-Mao; Anderson, Luke; Ragan-Kelley, Jonathan; Durand, Frédo (, ACM Transactions on Graphics)
-
Hu, Yuanming; Anderson, Luke; Li, Tzu-Mao; Sun, Qi; Carr, Nathan; Ragan-Kelley, Jonathan; Durand, Frédo (, International Conference on Learning Representations)We present DiffTaichi, a new differentiable programming language tailored for building high-performance differentiable physical simulators. Based on an imperative programming language, DiffTaichi generates gradients of simulation steps using source code transformations that preserve arithmetic intensity and parallelism. A light-weight tape is used to record the whole simulation program structure and replay the gradient kernels in a reversed order, for end-to-end backpropagation. We demonstrate the performance and productivity of our language in gradient-based learning and optimization tasks on 10 different physical simulators. For example, a differentiable elastic object simulator written in our language is 4.2x shorter than the hand-engineered CUDA version yet runs as fast, and is 188x faster than the TensorFlow implementation. Using our differentiable programs, neural network controllers are typically optimized within only tens of iterations.more » « less
-
Adams, Andrew; Durand, Frédo; Ragan-Kelley, Jonathan; Ma, Karima; Anderson, Luke; Baghdadi, Riyadh; Li, Tzu-Mao; Gharbi, Michaël; Steiner, Benoit; Johnson, Steven; et al (, ACM Transactions on Graphics)
An official website of the United States government

Full Text Available